• 博客(14)
  • 论坛 (1)
  • 问答 (2)
  • 收藏
  • 关注

原创 MEETUP预告 | 邀你一起吐槽AI开发那些事,让数据管理更高效

Graviti首次线下meetup,将在11月7日周六下午,于“看见咖啡”(上海市杨浦区政民路198号)召开。欢迎所有AI开发从业者、爱好者的到来!

2020-10-27 18:20:08 15

原创 监督学习—从好的label开始

在大家的算法工作中,会训练各种各样的模型。导致大家模型实际应用效果不够好的原因有很多,一些常见的原因主要是模型结构不合理 、损失函数不合理 、超参数设置不合理,但除了这些原因,我想最核心的一个原因是数据的质量本身。相信每一个自动驾驶行业的开发者对此都是会深有体会的,Lyft 团队在CVPR的presentation上就发出了“High quality labeled data is the key”的感慨。这也是本篇文章想要着重强调的主题。下面通过一个实验来让大家直观感受一下“标注质量对模.

2020-08-12 15:41:14 190

原创 数据集管理的可视化 —— 现在与未来

随着ADAS、自动驾驶、新零售等领域的快速发展,非结构化数据的体量急剧增加,传统的机器学习算法无法处理复杂多变的数据,而深度学习是基于神经网络的一种算法,更适合被非结构化数据“包围”的今天。其所带来的高度依赖数据集的大规模学习方法,极大增加了对于大规模数据集的需求。深度学习进行模型训练的关键是高质量大规模训练的数据集。当前,市场上大部分的云商公司,对于非结构化处理主要提供存储服务,但没有针对非结构化数据本身提供更多的解决方案。例如,不同行业数据应该如何组织、如何训练、如何形成行业知识库。相应的,这些存储

2020-06-11 15:13:48 1011

原创 机器学习算法评估指标——3D语义分割

3D语义分割是在三维点云中对每个点进行分类,属于同一类的点都要被归为一类。 例如如下场景,属于建筑的点都要分成一类,属于植物的点也要分成一类。下面重点介绍3D语义分割算法的评估指标。PA(Point Accuracy)定义:总体的分类准确度,分类正确的点数和点云总点数的比值 范围:0~100% 用途:这是最简单的度量分割准确性的方式MPA(Mean Point Accuracy)定义:平均分类准确度,计算每一类分类正确的点数和该类的所有点数的比值然后求平均 范围:0~100%MIoU(

2020-06-10 14:41:27 276

原创 机器学习算法评估指标——3D目标跟踪

与2D目标跟踪类似,3D目标跟踪可以分为单目标跟踪和多目标跟踪,首先介绍单目标跟踪(SOT)算法的常用评估指标;其次介绍多目标跟踪(MOT)算法的常用评估指标。单目标跟踪传统的评估tracker的方式是:在测试序列上运行一遍该跟踪算法(其中第一帧以ground truth作初始化),然后计算average precision或sucess rate。我们把这种只在测试序列上运行一遍的评估方法叫做one-pass evaluation (OPE)。然而tracker对初始化可能比较敏感,不同的起始帧可

2020-06-08 10:47:31 672

原创 机器学习算法评估指标——3D目标检测

在真实的三维世界中,物体都是有三维形状的,许多应用都需要有目标物体的长宽高还有偏转角等信息。以自动驾驶为例,在自动驾驶场景下,需要从图像中提供目标物体三维大小及旋转角度等指标,鸟瞰投影的信息对于后续的路径规划和控制具有至关重要的作用。我们将使用RGB图像、RGB-D深度图像和激光点云,输出物体类别及在三维空间中的长宽高、旋转角等信息的检测称为3D目标检测。多类别目标的检测问题可以转换为“某类物体检测正确、检测错误”的二分类问题,从而可以构造混淆矩阵,使用目标分类的一系列指标评估模型精度,例如:使用P..

2020-06-01 15:38:29 683

原创 机器学习算法评估指标——2D语义分割

语义分割有三大评价指标:执行时间、内存占用以及准确度。下面重点介绍语义分割准确度的评估指标。假设一共有k+1类(包括k个目标类和1个背景类),Pij表示本属于i类却预测为j类的像素点总数,具体地,Pii表示true positives,Pij(j≠i)表示false positives,Pji(i≠j)表示false negtivesPA(Pixel Accuracy)定义:分类正确的像素点数和所有的像素点数的比值 计算:范围:0~100% 用途:这是最简单的度量分割准确性的方.

2020-05-25 14:18:58 236

原创 机器学习算法评估指标——2D目标跟踪

在2D目标跟踪任务中,我们需要从精度、鲁棒性、运行速度等方面对算法进行综合评估。首先介绍单目标跟踪(SOT)算法的常用评估指标;其次介绍多目标跟踪(MOT)算法的常用评估指标。单目标跟踪APE(Average Pixel Error)定义:平均像素误差,一般指中心距离,即预测框与真实框中心位置的像素距离取帧平均 用途:用来判断两个矩形框的靠近程度。该值越大,说明误差越大AOR(Average Overlap Rate)定义:平均重叠率,即两个矩形框交集的面积与并集的面积之比取帧平均

2020-05-21 14:11:58 1138

原创 机器学习算法评估指标——2D目标检测

目标检测是计算机视觉领域的传统任务,需要识别出图像上存在的物体,给出对应的类别,并将该物体的位置通过最小包围框(Bounding box)的方式给出。下面介绍2D目标检测任务的常用评价指标。IoU(Intersection over Union)定义:交并比,两个矩形框交集的面积与并集的面积之比 范围:0~100% 用途:判断两个矩形框的重叠程度,值越高则重叠程度越高,即两个框越靠近 IoU 和Overlap Rate定义是完全相同的,只不过在检测任务中常写作IoU,在跟踪任务中常...

2020-05-18 18:48:04 2031

原创 人工智能训练数据如何存储?存储数据最大的痛点是什么?

计算机视觉,或者语音识别都需要用到大量的标注过的非结构化数据,有什么好办法存储和管理这些数据吗?你是怎么存储原始数据和标签数据的呢?如何做可视化?存储过程中的痛点是什么?...

2020-04-30 23:24:15 686 2

原创 公司组建一支算法团队的隐性成本都有哪些?

多年硅谷的工作经历告诉我们,组建一支算法团队远比认知的“昂贵”得多。比如需要为算法工程师和科学家们配备软件工程师,为他们做工具的支撑,需要采购诸如DGX或者Titan P级别的昂贵GPU和训练机器,可能还需要拥有标注团队和相关的项目经理。想听听AI从业者们如何看待这个问题?你的公司的隐性成本有哪些?...

2020-04-27 12:22:37 406

原创 算法工程师该如何做好时间管理?

多位硅谷算法工程朋友和我们分享过他们的日常,作为一个算法工程,其实有效开发算法的时间很少,很多时间都花在了寻找数据,数据拷贝,数据清洗,数据转换,可视化脚本撰写,安装框架(tensorflow,pytorch)的依赖,和标注团队对需求等等。做这些事情每周可能花费数10小时的时间,最高甚至高达95%。如果你是算法大人,你是怎么分配你的时间的?每样工作每周会花多少时间?或是占据你工作时间的百分比?...

2020-04-26 20:03:07 370

原创 Graviti携手UC Berkeley探索自动驾驶预测模型, INTERACTION预测挑战赛正式开启!

为促进自动驾驶领域的行为预测技术发展,加速预测模型/算法评价的研究,加州大学伯克利分校机械系统控制实验室(MSC Lab)携手AI数据服务平台提供商Graviti(格物钛)、世界领先的云服务商AWS(亚马逊云)举办的“INTERACTION数据集预测挑战赛”正式启动。目前学术界和工业界一致认为,行为预测(Prediction: 如轨迹、动作、意图)是自动驾驶领域最具挑战性的问题之一,它是阻碍全...

2020-03-24 13:19:28 45

原创 数据库版本管理:Flyway探索与实践

引言:如果你是一个独立开发者或者不需要维护多个系统,那么维护数据库版本并不复杂。但是如果你的团队正在快速迭代或者同时开发多个功能,在多个环境版本并行,在多个生产服务器上部署你的服务,那么数据库的管理将变成一件麻烦事。如何更新所有的数据库,并维护好所有的更新记录,把多个人的操作合并起来带来了挑战。​我们团队在开发的过程中也有同样的困扰。这篇文章将介绍我们团队是如何通过Flyway将这些问题逐一解...

2020-03-03 12:42:28 488

空空如也

作为算法工程师,你的时间都是怎么分配的?

发表于 2020-04-26 最后回复 2020-04-26

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除