• 博客(3)
  • 论坛 (1)
  • 问答 (2)
  • 收藏
  • 关注

原创 机器学习算法评估指标——2D语义分割

语义分割有三大评价指标:执行时间、内存占用以及准确度。下面重点介绍语义分割准确度的评估指标。假设一共有k+1类(包括k个目标类和1个背景类),Pij表示本属于i类却预测为j类的像素点总数,具体地,Pii表示true positives,Pij(j≠i)表示false positives,Pji(i≠j)表示false negtivesPA(Pixel Accuracy)定义:分类正确的像素点数和所有的像素点数的比值 计算:范围:0~100% 用途:这是最简单的度量分割准确性的方.

2020-05-25 14:18:58 254

原创 机器学习算法评估指标——2D目标跟踪

在2D目标跟踪任务中,我们需要从精度、鲁棒性、运行速度等方面对算法进行综合评估。首先介绍单目标跟踪(SOT)算法的常用评估指标;其次介绍多目标跟踪(MOT)算法的常用评估指标。单目标跟踪APE(Average Pixel Error)定义:平均像素误差,一般指中心距离,即预测框与真实框中心位置的像素距离取帧平均 用途:用来判断两个矩形框的靠近程度。该值越大,说明误差越大AOR(Average Overlap Rate)定义:平均重叠率,即两个矩形框交集的面积与并集的面积之比取帧平均

2020-05-21 14:11:58 1172

原创 机器学习算法评估指标——2D目标检测

目标检测是计算机视觉领域的传统任务,需要识别出图像上存在的物体,给出对应的类别,并将该物体的位置通过最小包围框(Bounding box)的方式给出。下面介绍2D目标检测任务的常用评价指标。IoU(Intersection over Union)定义:交并比,两个矩形框交集的面积与并集的面积之比 范围:0~100% 用途:判断两个矩形框的重叠程度,值越高则重叠程度越高,即两个框越靠近 IoU 和Overlap Rate定义是完全相同的,只不过在检测任务中常写作IoU,在跟踪任务中常...

2020-05-18 18:48:04 2068

空空如也

作为算法工程师,你的时间都是怎么分配的?

发表于 2020-04-26 最后回复 2020-04-26

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除