• 博客(4)
  • 论坛 (1)
  • 问答 (2)
  • 收藏
  • 关注

原创 数据集管理的可视化 —— 现在与未来

随着ADAS、自动驾驶、新零售等领域的快速发展,非结构化数据的体量急剧增加,传统的机器学习算法无法处理复杂多变的数据,而深度学习是基于神经网络的一种算法,更适合被非结构化数据“包围”的今天。其所带来的高度依赖数据集的大规模学习方法,极大增加了对于大规模数据集的需求。深度学习进行模型训练的关键是高质量大规模训练的数据集。当前,市场上大部分的云商公司,对于非结构化处理主要提供存储服务,但没有针对非结构化数据本身提供更多的解决方案。例如,不同行业数据应该如何组织、如何训练、如何形成行业知识库。相应的,这些存储

2020-06-11 15:13:48 1029

原创 机器学习算法评估指标——3D语义分割

3D语义分割是在三维点云中对每个点进行分类,属于同一类的点都要被归为一类。 例如如下场景,属于建筑的点都要分成一类,属于植物的点也要分成一类。下面重点介绍3D语义分割算法的评估指标。PA(Point Accuracy)定义:总体的分类准确度,分类正确的点数和点云总点数的比值 范围:0~100% 用途:这是最简单的度量分割准确性的方式MPA(Mean Point Accuracy)定义:平均分类准确度,计算每一类分类正确的点数和该类的所有点数的比值然后求平均 范围:0~100%MIoU(

2020-06-10 14:41:27 302

原创 机器学习算法评估指标——3D目标跟踪

与2D目标跟踪类似,3D目标跟踪可以分为单目标跟踪和多目标跟踪,首先介绍单目标跟踪(SOT)算法的常用评估指标;其次介绍多目标跟踪(MOT)算法的常用评估指标。单目标跟踪传统的评估tracker的方式是:在测试序列上运行一遍该跟踪算法(其中第一帧以ground truth作初始化),然后计算average precision或sucess rate。我们把这种只在测试序列上运行一遍的评估方法叫做one-pass evaluation (OPE)。然而tracker对初始化可能比较敏感,不同的起始帧可

2020-06-08 10:47:31 746

原创 机器学习算法评估指标——3D目标检测

在真实的三维世界中,物体都是有三维形状的,许多应用都需要有目标物体的长宽高还有偏转角等信息。以自动驾驶为例,在自动驾驶场景下,需要从图像中提供目标物体三维大小及旋转角度等指标,鸟瞰投影的信息对于后续的路径规划和控制具有至关重要的作用。我们将使用RGB图像、RGB-D深度图像和激光点云,输出物体类别及在三维空间中的长宽高、旋转角等信息的检测称为3D目标检测。多类别目标的检测问题可以转换为“某类物体检测正确、检测错误”的二分类问题,从而可以构造混淆矩阵,使用目标分类的一系列指标评估模型精度,例如:使用P..

2020-06-01 15:38:29 777

空空如也

作为算法工程师,你的时间都是怎么分配的?

发表于 2020-04-26 最后回复 2020-04-26

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除